Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics

نویسندگان

  • Goro Tanifuji
  • John M. Archibald
  • Tetsuo Hashimoto
چکیده

Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced the complete mtDNA of Lotharella oceanica and compared it to that of another chlorarachniophyte, Bigelowiella natans. The linear mtDNA of L. oceanica is 36.7 kbp in size and contains 35 protein genes, three rRNAs and 24 tRNAs. The codons GUG and UUG appear to be capable of acting as initiation codons in the chlorarachniophyte mtDNAs, in addition to AUG. Rpl16, rps4 and atp8 genes are missing in L.oceanica mtDNA, despite being present in B. natans mtDNA. We searched for, and found, mitochondrial rpl16 and rps4 genes with spliceosomal introns in the L. oceanica nuclear genome, indicating that mitochondrion-to-host-nucleus gene transfer occurred after the divergence of these two genera. Despite being of similar size and coding capacity, the level of synteny between L. oceanica and B. natans mtDNA is low, suggesting frequent rearrangements. Overall, our results suggest that chlorarachniophyte mtDNAs are more evolutionarily dynamic than their plastid counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Evolutionary Analysis of Organellar Genomic Diversity in Green Plants

Endosymbiotic bacteria have been reported with extraordinary reduced genome in numerous cases. Many endosymbiotic green algae also show extreme genomic reduction of their nuclear genomes, but they may retain a fully functional plastid genome if they maintain photosynthetic ability or if they can survive outside of their host. In order to better understand how the endosymbiotic lifestyle has aff...

متن کامل

Nucleomorph Genome Sequences of Two Chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata

Many algal groups acquired complex plastids by the uptake of green and red algae through multiple secondary endosymbioses. As a result of gene loss and transfer during the endosymbiotic processes, algal endosymbiont nuclei disappeared in most cases. However, chlorarachniophytes and cryptophytes still possess a relict nucleus, so-called the nucleomorph, of the green and red algal endosymbiont, r...

متن کامل

Diurnal Transcriptional Regulation of Endosymbiotically Derived Genes in the Chlorarachniophyte Bigelowiella natans

Chlorarachniophyte algae possess complex plastids acquired by the secondary endosymbiosis of a green alga, and the plastids harbor a relict nucleus of the endosymbiont, the so-called nucleomorph. Due to massive gene transfer from the endosymbiont to the host, many proteins involved in plastid and nucleomorph are encoded by the nuclear genome. Genome sequences have provided a blueprint for the f...

متن کامل

Nucleomorph genomes: structure, function, origin and evolution.

The cryptomonads and chlorarachniophytes are two unicellular algal lineages with complex cellular structures and fascinating evolutionary histories. Both groups acquired their photosynthetic abilities through the assimilation of eukaryotic endosymbionts. As a result, they possess two distinct cytosolic compartments and four genomes--two nuclear genomes, an endosymbiont-derived plastid genome an...

متن کامل

Experimental Reconstruction of the Functional Transfer of Intron- Containing Plastid Genes to the Nucleus

BACKGROUND Eukaryotic cells arose through the uptake of bacterial endosymbionts and their gradual conversion into cell organelles (mitochondria and chloroplasts). In this process, a massive transfer of genes from the genome of the endosymbiont to the nuclear genome of the host cell occurred. Whereas intron-free organellar genes could conceivably enter the nucleus as DNA pieces and become functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016